Application of the Haptic-device PHANT oM for
the generation of trayectories of a polishing belt
over arigid object defined in VRML.

Gerrit Farber, Luis Basariez

Institut d"Organitzacio i Control de Sistemes Industrials (I0C)
Programa Doctorado: Automatizacion Avanzaday Robdtica

Table of contents

8 oo [T o o S 3
APPHICALION PCG ...ttt 4
O C S 4
[=T oL T oo [N Lo PSSP 6
D= T a1 o PSR 6
o AN NN I S 6
GHOST SDK ...ttt ettt e ste st e bestesbestesnenrennens 7
Implementation of PHANTOMooooiiiiiic et 8
SIrUCTUre Of SOUMCE-COOR......coueeuieieeieieiee ettt sttt snenne s 8
Implementations in source code for PHANTOMccocoiiiinininiciene e 8
Change from MDI to SDI AppliCatioNcccoueiieeiieeiiecee e 9
Derivation Of MFC-CIESSES........cccceiieiesieiesieseeseeseeee e eee e see e 9
Required functions for PHANTOM (pcgview.cpp/h)ccoveveeeevvccevieiee, 10
Interface to haptic device (Template.Cpp/h)ooeeieeeeiieeiieeeeeee e 10
Visualization with ghostGLManager (Templates_graphics.cpp/h).................. 11
Haptic environment (Templates haptics.cpp/h)ccevveeveieieenecce e 11
Problems in original Program ... e 12
0SS Y 0 1o [14
LTS0S = I\ [0 (R 14
Setup and initialization of the PHANTOM ..o 14
Loading the WOIKDIECEooiuie et 15
Rotation and displacement of the SCENEccveeevecve i, 15
PlaCing trayECLOMESccueiiriirieeieeieeee ettt bbb 16
FN] 0= g o U P PRSP 17
SOUICE-COUE ...ttt et ettt e bbb ene e 17
TEMPIALEN ... e 17
LIS 1010 = (X ol o) o ISR USSR 18
Template graphiCS.N.. ..o 18
Template graphiCS.CPP . .coveireeieieeste et 19
Template haptiCS.N......ocuo i 22
Template NaPLiCS.CPP .ovevereerierierieeeeee et 22

glcode.c (Function GetTrianleldent) ... 25

glcode.c (Function GLRenderProvBelt)coceevvieeiiceie e 26
glcode.c (Function Pass Haptic POSItioN)cccceecieeieeiiecciece e 27
glcode.c (Parts of function GLReNderBOXES).........cccuverererererneenieniesesieseenes 27
BibliOgraphyccoeeceece s 28

SARTI |ntroduction

Haptic devices offer new perspectives for areas like simulation and teleoperation. For
countless applicationsin the world of three dimensional space the interaction between the
operator and the computer requires more than the smple two dimensional input of the
mouse. Even more with the haptic devicesit is possible to feedback the forces and torques
that result in the collision with the objects being part of the ssmulation or the amplified
areaof vision. It isacommon technique to scale the length and forces applied by an oper-
ator.

One of the applications of automation in the industry is the polishing of workpieces that
are passed along a polishing belt. The advantage of the automation of these processesisto
avoid accidents of operators, harm caused by the dust in the lungs of the operator and of
course the fact that all the workpieces are treated in the same way which then resultsin a
higher quality of the product.

In the “Institut d"Organitzacié i Control de Sistemes Industrials’ (I0C), a software-pro-
gram was developed that permits applying trayectories to aworkpiece which is described
with amesh in VRML. The information of the trayectories then are stored in afile which
can be utilized by the robot executing the task.

For the positioning of the trayectories the program uses the mouse and the keyboard as
interface. Taking advantage of the possibilitiesthat offers a haptic device, the objective of
the presented work is to be able to use the program with haptic device PHANTOM that is
manufactured by the company SensAble Technologies.

The presented work is based on the existing software program that handles and adminis-
trates the workpiece and the applied trayectories. Additional functionality was imple-
mented which permits the operator to use the PHANTOM to determine the position and
the force of each trayectory.

PART Application PCG

In the |OC a software-application was developed, written in C™* containing the imple-
mentation of the PCG (Polishing Curves Generator). The program was created as part of a
final year's project by Ivan Diaz Martin, supervised by Luis Basafiez Villaduenga in the
year 2001. Thetitle of this project is“Generacion de unainterface grafica para determinar
trayectorias arealizar por robots en el pulido de piezas’.

The objective of the project was to create atool on the computer that permits the genera-
tion of trayectories over a workpiece (for example a doorknob) using a set of parameters.
The stored trayectories then can be used to program a robot executing a task of polishing
aworkpiece by passing it along a polishing belt.

The parameters include values defining the force with which the workpiece will be
pressed against the polishing belt, the velocity of the polishing belt for the particular
trayectory and also the width of the polishing belt. Depending on these parameters the
robot is able to fulfill hiswork automatically.

2.1 PCG

The application of the PCG was written for the PC-platform with the operating system

Microsoft Windows. The program was implemented in C™* using the Microsoft Founda-
tion Classes (MFC) for the programming of the windows and the administration of the
data. The visual part of the Application-Interface (API) is implemented with OpenGL,
showing the object to be polished, a pointer which indicates where to place the trayecto-
ries and the trayectories itself.

The program reads a file that describes the object to be polished using the definition of
VRML. Both VRML 1.0 and VRML 2.0 can be used for the description of the object, tak-
ing in account that only Mesh-definitions are permitted. The mesh consist of individual
triangles that are defined by the position of its vertices. With this information the position
and orientation of the triangle can be obtained. The triangles altogether then form the
object that is considered the workpiece.

After the workpiece islocated in the virtual space the mouseis used to place the trayecto-
ries. The visualization of a trayectory consists of two parts: First the path that the robot
has to pass the workpiece along the polishing belt, indicated by a thin line on the surface
of the object. Second a wide line that represents the resulting surface that is achieved by
passing the workpiece along the polishing belt. The second line is a projection inside the
object beneath the line that indicates the path of the object along the polishing belt. The

Application PCG

parameters for pressure and width determine the depth under the surface of the object
and the width of the line.

" Paivhizg Caren e fnes stor - Jlss s =181
[7 alf]x]

Ca) E'é:‘?,i.!:_.jj IFEJ Kjzpic| pl 2
 ishing Do Parametens &

Curvm aHshules Fobrdeg paamaiar
10 Trgae- {1 Yaacdp |10
1D Band |1 Frezoum: |5

' Faskrabia wih [z

St

Pty N

Figure1. Program “PCG” utilizing the mouse pointer.

The positioning of the polishing trayectories can be divided into two types. Once the
parameters are set, a series of connected trayectories can be placed, all using the same set
of parameters. This series then can be deselected and a new series of trayectories can be
positioned with a different set of parameters, even though the values of the parameters
might habe the same values.

The program also provides different operating modes for the visualization of the object.
The normal operating mode is the mode in which the object is drawn by showing the
individual triangles. Besides that a mode exist in which only the vertices of the triangles
are shown and also a mode in which only the edges of the triangles are shown. In any
case the trayectories are displayed in the same way.

In the case that the definition of the object in VRML results in the wrong orientation of
the triangles, the triangles can be displayed using counter-clockwise visualization of the
object.

As part of the positioning of the polishing trayectories, the program offers a variety of
post-processing of the trayectories. Once several series of trayectories are positioned it is
possible to return to the parameters of each of the series, changing the values for veloc-
ity, pressure or width. However, it is not possible to change the position of one or more
trayectories once they are placed. In this case it is indispensable to replace the trayectory
by a new one.

Finally the application permits to store the information of the positioned trayectoriesin
two files with the values for position and the parameters of the trayectories. The basic
difference between the two files is the format to store the information. These files then
can be used to upload to a robot accomplishing itstask of polishing the real workpieces.

PART3 Haptic device

The Application PCG is programed to utilize the mouse of the computer in order to posi-
tion the trayectories depending on a set of parameters entered by the keyboard. For the
operator it may not be adequate to enter a value of the force that the robot then will apply
to the workpiece. It would be ideal to give the operator the possibility to actually feel the
force which he wants the robot to press the workpiece against the polishing belt. This sen-
sation of feeling the applied force can be realized by ahaptic device.

3.1 Definition

The word haptic is of greek origin [greek: hdptein] and describes the tactile sense. It isthe
physical interaction via touch which nowadays mainly takes in consideration touching
and interacting with virtual and remote environments. It is used as an addition to optical
and acoustical output devicesin various fields of applications.

The haptic devices already can be found in areas of Education, Medicine, Entertainment
and of course in the industry. Various of the following tasks are already performed using
haptic devices:

» Amplification of vision for teleoperation in surgery,Rehabilitation, Computer games,
CAD-designs and construction, teleoperation, simulation of virtual environments,
position and force scaling, assistance in guided remote equipment, and many more.

The haptic devices form a man-machine-interface which gives different possibilities to
the so far utilized interfaces. Amongst these mouse, keyboard, speakers and of course the
monitor. With the haptic devices it is possible to enter in a ssmulation of an authentic
world with the advantage of actualy feeling the movements and applying forces by the
intuitive sense of the operator.

3.2 PHANToM

The haptic interface used in the presented work isthe PHANToM™ 1.5/6DOF manufac-
tured by the company SensAble Technologies. This haptic device was developed at the
Massachusetts Institute of Technology (MIT) and provides the ability to operate in an
office/desktop environment, compatibility with standard PCs and a universal design for a

Haptic device

broad range of applications. The operating system may be Microsoft Windows or Linux.
Several models of the PHANToM with different features are available.

The PHANToM™ 1.5/6DOF has the ability to sense the position and the orientation
(3+3 degrees of freedom) of the handle and also to feedback the three forces and the
three torques, indicating a collision of the haptic pointer with the virtual object.The
workspace that provides the PHANTOM 1.5 is 19.1 x 26.7 x 38.1 cm, or the range of
motion approximate to the lower arm pivoting at the user's elbow.

3.3 GHOST SDK

Together with the PHANToM the manufacturer provides a package of software libraries
called GHOST SDK (General Haptic Open Software Development Toolkit) which is an
object-oriented toolkit, written in C™, containing classes and methods for support of the
haptic interface PHANTOM. It represents the haptic environment as a hierarchical col-
lection of geometric objects and spatial effects (buzzing, inertia, viscosity, etc.).
GHOST-libraries support triangular meshes which are used by the existing PCG-applica-
tion.

PART | mplementation of PHANToM

For the implementation of the PHANTOM to the existing code of the PCG-Application a
series of changes had be included. In this partition first the structure of the source code
will be explained and then the necessary changes.

4.1 Structure of source-code

The origina application is generated with the MFC (Microsoft Foundation Classes) and
which forces afixed structure of coding. The Application then can be separated into four
parts resulting from the original code: The Mainframe-part, the application-part, the doc-
ument-part and the view-part. Additionally the part of the PHANToM had to be included.
The following table shows the structure of the application with the new part for the
PHANTOM:

h-File c/cpp-File
Mainframe: mainfrm.h mainfrm.cpp
Application: pcg.h pca.cpp
Document: pcgdoc.h pcgdoc.cpp
wrl2mesh.h wrl2mesh.c
graph.h graph.c
View: pcgview.h pcgview.cpp
PHANTOM: template.h template.cpp
template_graphics.h template_graphics.cpp
template_haptics.h template_haptics.cpp

TABEL 1. Structure of the sour ce-code with additional part for the PHANTOM.

4.2 Implementationsin source code for PHANToM

Enabling the PHANTOM requires a range of implementations to the program. First of all
the type of document had to be changed from MDI (Multi-Document-Interface) to SDI
(Single-Document-Interface). In continuation the implemented classes had to be changed
which are used by the MFC. The GHOST-SDK uses a derivation of these fundamental
classes for the document-part, view-part and application-part with additional functional-
ity to be able to utilize the PHANTOM.

Implementation of PHANToM

421 Changefrom MDI to SDI Application

The libraries which are utilized allow the user to use the graphical-environment that
works with a single document. The existing program is using a multiple document envi-
ronment, although the advantages are not used. This change makes it necessary to mod-
ify the file pcg.cpp. The fundamental change takes place where the document-part gets
linked with the view-part and the mainframe-part. The considered code is the following:

MDI-code: SDI-code:

CMultiDocTemplate* pDocTemplate; CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CM ultiDocTemplate(pDocTemplate = new CSingleDocTemplate(
IDR_VRMLI1TYPE, IDR_VRMLITYPE,
RUNTIME_CLASS(CPCGDoc), RUNTIME_CLASS(CPCGDaoc),
RUNTIME_CLASS(CChildFrame), RUNTIME_CLASS(CMainFrame),
RUNTIME_CLASS(CPCGView)); RUNTIME_CLASS(CPCGView));

AddDocTemplate(pDocTemplate); AddDocTemplate(pDocTemplate);

TABEL 2. Fundamental change in source-code to pass the application from a
MDI (Multi Document Interface) to a SDI (Single Document Interface).

Furthermore the files Childfrm.cpp together with Childfrm.h are no longer used and the
corresponding include-call is removed. The change from MDI to SDI aso implements
some minor changes to the menu-bar and the tool-bar in order to disable some of the
functions while no workpiece is displayed and to disable the ability to load another
workpiece while one is already |oaded.

422 Derivation of MFC-classes

The classes used by the MFC in principle are al'so used by the GHOST-SDK. The differ-
ence is that some functionality for the PHANTOM has to be included. Therefore the
GHOST-SDK usesits own set of classes with a derivation of the ones used by the MFC.
The change of classes are the following:

Derivation of MFC-classes include h-file:
Mainframe: class CMainFrame : public CMDIFramewnd

class CMainFrame : public CHapticFrame HapticFrame.h
Application: | class CPCGApp : public CWinApp

class CPCGApp : public CHapticApp HapticApp.h
Document: class CPCGDoc : public CDocument

class CPCGDoc : public CHapticDoc HapticDoc.h
View: class CPCGView : public CView

class CPCGView : public CHapticView HapticView.h

TABEL 3. Change of classesto use the functionality necessary for the GHOST -libraries.

The derived classes for the GHOST-SDK then require a set of functions that are called
during the execution of the application.

Implementation of PHANToM

4.2.3 Required functionsfor PHANTOM (pcgview.cpp/h)

The haptic device PHANTOM requires a series of functions which are called by the
application during execution. These functions are to be included into the files that handle
the visualization of the application. The files are pcgview.cpp and pcgview.h and the
required functions are the following:

voi d Start Program BOQOL) ;

voi d I nitGraphics();

voi d Enabl eSer voLoop(BOOL bEnabl e) ;
voi d Updat eGr aphi cs();

voi d Resi zeGraphics(int cx, int cy);
voi d EndPr ogram) ;

BOOL Pr ogr anDone() ;

voi d Ter m& aphi cs() ;

LPCSTR* Quer yPHANToMNanes() ;

All these functions are required because they are called at a certain instance during the
execution of the application. The functions“ StartProgram” and “ InitGraphics’ are called
at the very beginning of the execution and thisis where the virtual scene will be defined.
Here also the initialization of the existing OpenGL part isimplemented with the function
“Init_GL".

The function “EnableServol oop” is used to give the impulse to start or to end the servo-
loop which is necessary for generating the loops in which the information of the haptic
device gets updated.

This servo-loop then calls the function “ UpdateGraphics* where al the functions are to
be placed that require permanent updates. In this case it is the tracking of the position
and the forces of the haptic device and also the rendering of the graphical part of the
application.

The function “ResizeGraphics® is called every time the screen is resized, which aso
occurs at the beginning of the execution.

For the termination of the application the three functions “EndProgram” and “ Program-
Done” and “ TermGraphics’ are performed. Here the haptic device and the scene will be
terminated and the occupied memory will be released.

4.24 Interfaceto haptic device (Template.cpp/h)

The file template.cpp together with template.h works as an interface between the view-
part of the application (pcgview) and the part of the haptic device. It contains the defini-
tion of the scene and the haptic device which is necessary for the generation of the virtual

-10-

Implementation of PHANToM

environment. During the initialization of the virtual scene a series of important include
files are required:
#i ncl ude "gst Scene. h"

#i ncl ude <ghost GLSyncCaner a. h>
#i ncl ude "G&.. h"

The file “gstScene.h” contains the functionality that provides the handling of the scene.
This is the basic unit which then gets loaded with objects like the haptic device, the
workpiece and the trayectories. Also the file “ghostGLSyncCamera.h is necessary
which enables certain functionality together with the functions of OpenGL. Finally the
file*GL.h" hasto be included for the ability to use commands of OpenGL.

4.25 Visualization with ghostGL M anager (Templates _graphics.cpp/h)

Asfor the graphical part of the virtual environment it is necessary to load the ghostGL -
Manager. This manager makes it possible to visualize the scene and all of its contents.
Including the file “ghostGL PinchXform.h* gives additional functionality to the visual-
ization which isthe possibility to move the camera position within the scene. This can be
achieved by pressing constantly the button on the handle of the PHANToM and displac-
ing or rotating the handle meanwhile. The resulting effect is that the user displaces and
rotates the entire virtual scene, in other words the operator changes the position and ori-
entation of the camera

The function “update_graphics®, initiated by the view-part, makes sure that the virtua
scene will be redrawn and also the position of the PHANTOM is updated and send to the
part of the program where the trayectories, programmed in OpenGL, are processed. In
this part of the program also the termination of the ghostGL Manager can be found, initi-
ated by the view-part, when closing the application.

4.2.6 Hapticenvironment (Templates _haptics.cpp/h)

In this part of the program the information is processed which isin direct relation to the
haptic device. Once the scene is initialized, it can be loaded with different “ separators’
(term according to GHOST-SDK). One of the separators is the haptic device which gets
initialized in this partition.

The workpiece also has to be attached to the virtual environment and unlike the trayecto-
ries, the workpiece has to be rigid and touchable. The workpiece, defined in VRML, can
be added as a separator to the virtual environment, just like the haptic device.

The additional functionality implemented in this part is the starting and the termination
of the servo-loops necessary for the haptic device and the virtual environment in order to
obtain information on position and orientation of the handle and also to feedback the
considered forces and torques, if they exist. In the presented work only the position and

-11-

Implementation of PHANToM

the corresponding forces of the handle returned to the electrical motors of the PHAN-
ToM are of interest.

The GHOST-libraries permit to obtain the position of the PHANTOM in the virtual envi-
ronment by calling the function “getSCP_P’. The abbreviation SCP signifies Surface-
Contact-Point. The function for obtaining the feedback force can be obtained with the
function “ getReactionForce_WC". The abbreviation stands for World-Coordinates.
Once the position and the forces are determined they can be passed to the part where the
application handles the trayectories (glcode.cpp) to be placed, depending on the position
and the applied force of the haptic device. This is achieved by the function-call
“Pass Haptic_Position* which contains the arguments position and forces.

In the program PCG the contact point of the object with the mouse-pointer is obtained by
comparing the position of the mouse in 2D-coordinates with the projection of the work-
piece to screen-coordinates. In the original program a routine is implemented, using
OpenGL, that returns the identity of the triangle over which the mouse is located. The
GHOST-libraries do not support any 2D values and therefore it is not possible to use the
implemented functionality. A new function (“GetTriangleldent”) had to be implemented
surrounding each triangle with avirtual box and then comparing if the actual position of
the haptic device is within this surrounding box. With this information and the fact that
the applied force is greater than zero the processing is continued in the original way.

Asanext step afunction (“ GLRenderProvBelt*) was implemented that projects arectan-
gle with the length of the edges equal to the width of the trayectory to be placed. This
rectangle then indicates the operator in which depth the trayectory will be placed. The
bigger the value of the applied force, the deeper the rectangle and the resulting trayectory
will be placed.

In the original program it was only possible to use the left mouse button for the confir-
mation where to locate a certain trayectory. It is not very convenient to work with the
mouse and the PHANTOM at the same time. For convenience the confirmation to posi-
tion a trayectory now also can be done with the space bar or the return key of the key-
board.

With these implemented functions the program PCG is fully functional with the haptic
device PHANTOM.

4.3 Problemsin original program

During the implementation of the functionality of the haptic device PHANTOM it was
discovered that the original program was not fully functional. Occasionally the program
does not respond properly. When a set of trayectoriesis placed, stored to the pcg-file and
then reloaded, the trayectories not aways were reloaded correctly. The problem was
found in two instances, during the calculation of angle “phi” of the trayectories. A divi-
sion was used that occasionally has a cero in the denominator. The program, however,

Implementation of PHANToM

does not interrupt but continues with an undefined value “-1.#ND". Which resultsin a
wrong execution of the program. This problem only occured when saving and recovering
a set of trayectories. As a solution for the problem the values of the respective variables
are checked and set to a defined value.

-13-

SARTS Usr’sGuide

The presented work is based on the existing software program that handles and adminis-
trates the workpiece and the applied trayectories. The software implementation of the
additional functionality in order to be able to use the haptic device PHANToOM was

described in the last partition. In this partition the impact on the utilization of the program
is described.

5.1 General Note

First of all it has to be highlighted that at the very beginning it might seem difficult to
handle the haptic device PHANToM. Thisis due to the additional dimension that the hap-
tic device provides, compared to the mouse, and due to the possibility to rotate the entire
scene with the handle. Therefore it is necessary to get familiarized with its use.

The functionality provided by the original program, using the mouse to rotate and move
the workpiece, no longer exists and is replaced by the functionality of the haptic device
PHANTOM.

5.2 Setup and initialization of the PHANToM

Before the program can be used it isindispensable to connect the PHANTOM to the paral-
lel port of the computer, connect the supply cable and switch on the two switches on the
back-side of the chassis.

The next step isto start the program “ PCGHaptic.exe", described in this document. Once
the program is executed, a screen will appear (see Figure2).

Hold the PHANTeM in the
neutral position.

Do not use the reset arm
on the 3.0 model.

Press enter to continue

Figure 2. I nitial screen, movethe handle of the PHANTOM into
the neutral position and press“Enter” ("Return”).

-14-

User’s Guide

The neutral position of the handle of the PHANTOM can be reached by elevating the
handle by 10 to 15cm above the table. This position is indicated by the dashed linesin
Figure3. The handle also has to be orientated horizontally facing away from the chassis.
Once the PHANTOM isinitialized, the handle can be placed on the table again.

Figure3. Neutral position of the haptic indicated by the dashed lines.

Now it is necessary to stroke the key “Enter” (“Return”) to store this position as refer-
ence point. Once the PHANTOM is initialized, the handle can be placed on the table

again.

5.3 Loading the workpiece

The next step is to load a workpiece, defined in VRML. The option “Open Workpiece”
can be found in the menu under “File”. Once the workpiece is selected and loaded, the
functionality of the program does only vary when applying the pressure to a certain
trayectory and performing arotation or displacement of the scene.

5.4 Rotation and displacement of the scene

Once the workpiece is |loaded to the scene it is possible to rotate and displace it together
with the entire scene. This can be achieved by pressing the button that can be found on
the handle of the PHANTOM. It is necessary to press the button constantly while rotating
or displacing the handle.

-15-

User’s Guide

5.5 Placing trayectories

The main difference in the process of placing the trayectoriesisthat in the dialog “ Create
anew curve® it is not necessary to enter avalue for “Pressure”. The value for “Pressure”

then will be determined by the applied force of the PHANAToOM at the beginning of the
trayectory.

Like in the origina program the trayectories can be placed by stroking the left mouse
button. However, naturally a person that is right hander uses the right hand to handle the
PHANTOM (viceversafor left hander) and isfamiliar with the use of the mouse with his
right hand as well. Handling the PHANToM with the right hand it was found inconve-
nient to use the left hand to stroke the left mouse button in order to place the trayectories.
Therefore this function was extended to the two keys “Space” and “Return” on the key-
board.

Like in the origina program, all the following subtrayectories are placed with the same
valuefor “Pressure’, only choosing anew trayectory will allow the user to apply adiffer-
ent value for “ Pressure”.

The subsequent process of saving the trayectories and also the format of the files con-
taining the information of the trayectories is performed in the same way asit was imple-
mented in the original program.

-16-

PART 6 Appa’\dn(

6.1 Source-Code

The following source code was added into the PCG-Application in order to implement the
functionality of the haptic device PHANTOM:

6.1.1 Templateh

/] —=== == —=== == —======
/1 Fi | ename : Tenplate.h

/1 Witten by : Gerrit Farber

/1 Pr oj ect . Tenpl ate Ghost Application

/1 Modul e : Platform I ndependent Application Entry

/] —=== == —=== == ——=—=—=—==

#i f ndef TEMPLATE_H
#define TEMPLATE_H

#i fdef _WN32
/1 Disable data conversion warni ngs

#pragma war ni ng(di sabl e : 4305) /1 X86

#endi f

/] ==== == ==== == —======
/1 d obal Variables / Constants / Include-files

/] =—=== == ==== == —======
#defi ne PHANTOM_NAME "Default PHANToM' // PHANToOM configuration string

#i ncl ude "gst Scene. h"

#i ncl ude <ghost G.SyncCaner a. h>

#i nclude "GL. h"

/] —=== == —=== == ——=—=—=—==
I Functi on

/] —=== == —=== == —======
voi d start_progran(int bReset PHANToM ;

voi d end_programvoi d);

static gstScene *nyScene = NULL;

static gstSphere *nySphere;

static gst PHANToM * myPHANTOM

static ghost & SyncCanera *m canera;
static gst BoundaryCube *m_gst Wor kspace;
static gstSeparator *rootSep;

static BOOL Renew nc;

#endi f // TEMPLATE_H

-17 -

Appendix

6.1.2 Template.cpp

/] === ==
Il Fi | enane . Tenpl ate. cpp

I Witten by : Gerrit Farber

I Pr oj ect . Tenpl ate CGhost Application

I Modul e : Platform I ndependent Application Entry

|| === ==

#i ncl ude "Tenpl ate. h"
#i ncl ude "Tenpl at e_haptics. h"
#i ncl ude "Tenpl at e_graphi cs. h"

void start_program (i nt bReset PHANToM

{ nyScene = new gstScene();// Create a shared static instance of the scene
myScene = init_haptics(nyScene, bReset PHANToM ;// Initialize scene graph
i nit_graphics(nmyScene);// Now force init_graphics to |oad the scene graph

}

voi d end_program (voi d)
{ /] Performwhatever cleanup needs to be done
i f (myScene)
del et e nyScene;

6.1.3 Template graphicsh

|| === ==
I Fi | enane : Tenpl at e_graphics. h

I Witten by : Gerrit Farber

11 Pr oj ect . Tenpl ate Ghost Application

I Modul e : Platform I ndependent Graphics

|| === ==
voi d i nit_graphi cs(gstScene *pScene = NULL);

voi d term graphi cs(voi d);

voi d reshape(GLint width, GLint height);
voi d updat e_gr aphi cs(void);

voi d Checkl f VRMLOpen2(BOQL) ;

voi d OnGoHorre() ;

voi d Mul ti pl yMatri xPoi nt () ;

static doubl e XHapti cPosCurr;
static doubl e YHapti cPosCurr;
static doubl e ZHapti cPosCurr;
static doubl e XHapti cPosPrev;
static doubl e YHapti cPosPrev;
static doubl e ZHapti cPosPrev;
static doubl e XHapti cForce;
static doubl e YHapticForce;
static doubl e ZHapti cForce;
static BOOL m VRML_Fi | eOpen;
static double TransMatrix[4][4];
static doubl e Pointlnput[4];
static doubl e PointCutput|[4];
static gstTransformMatri x CaneraTransMatri x;

#endi f // TEMPLATE _CGRAPHI CS_H

-18-

Appendix

6.1.4 Template graphics.cpp

|| === ==
I Fi | enanme : Tenpl at e_gr aphi cs. cpp

I Witten by : Gerrit Farber

I Pr oj ect . Tenpl ate Ghost Application

11 Modul e : Platform I ndependent Graphics

/] === ==

#i ncl ude "stdafx. h"

#i ncl ude "Tenpl at e_graphi cs. h"
#i ncl ude "Tenpl at e_haptics. h"
#i ncl ude "Tenpl ate. h"

#i ncl ude "gl code\ gl code. h"

#i ncl ude <ghost G.SyncCaner a. h>
#i ncl ude <ghost GLManager . h>
#i ncl ude <ghost GLPi nchXf orm h>

static ghost G_LManager *nyG.Manager = NULL;
static gst Boundar yCube *workspaceBounds = NULL;
static ghost GLSyncCanera *nyCaner a;

voi d init_graphics (gstScene *pScene)
{

Renewl nc=0;

m VRM__Fi | eOpen2=FALSE;

if (myG.Manager && pScene)
myG_Manager - > oadScene(pScene) ;

if (!myG.Manager)

{
nmyCaner a= new ghost G.SyncCaner a() ;
nyG.Manager = new ghost GLManager (nyCaner a) ;

/1 setup the pinch transform = novenent canera

my Caner a- >set SyncMbde(ghost G_SyncCaner a: : SYNC_WORKSPACE _TO CAMERA) ;
static ghost GLPi nchXFor m *pi nchXFor mObj = new ghost GLPi nchXFor n() ;
myG.Manager - >addAct i onObj ect (pi nchXFor nhj) ;

voi d term graphics (void)
{ i f (myG.Manager)
{
del et e nyG.Manager ;
myG_Manager = NULL;

-19-

Appendix

voi d reshape (G.int width, Gint height)
{
i f (nyG.Manager)
nyGLManager - >r eshape(w dt h, hei ght);

voi d updat e_graphi cs (void)
{

gst Poi nt Caner aPos;

i nt i,j;

Renewl nc++;
/1l G aphics updated two out of three cycle in order
/1 to permit the tool bar to update
if (myG.Manager && (Renewinc>1 || m VRM__Fil eCpen2==0))
{

i f (Renewl nc==2)

Renewl nc=0;
myG.Manager - >r edraw() ;

/1 Read Haptic: Position and Force and store
/1 current position to previous position
XHapt i cPosPrev = XHapti cPosCurr;
YHapt i cPosPrev = YHapti cPosCurr;
ZHapt i cPosPrev = ZHapti cPosCurr;

XHapt i cPosCurr =query_phant om Xpos() ;
YHapt i cPosCurr=query_phant om Ypos() ;
ZHapt i cPosCur r =query_phant om _Zpos() ;
XHapt i cFor ce=query_phant om Xf orce();
YHapt i cFor ce=query_phant om Yf orce();
ZHapt i cFor ce=query_phant om Zf orce();

i f(mVRM__Fil eCpen2==1)
{
/1 get camera position and orientation in order
/1 to rotate and nove haptic-position
Caner aTransMatri x = nyCaner a- >get Transf or mvat ri x(FALSE) ;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
TransMatrix[i][j] = CaneraTransMatrix._a. melements[i][j];

/1 rotation and di spl acement of haptic position
/] due to canera position

Poi nt I nput[0] = XHapticPosCurr;

Poi nt | nput [1] YHapt i cPosCurr;

Poi nt | nput [2] ZHapt i cPosCurr - 350;
Pointlnput[3] = 1;
Mul ti pl yMatri xPoint();

XHapt i cPosCur r =Poi nt Qut put [0] ;
YHapt i cPosCur r =Poi nt Qut put [1] ;
ZHapt i cPosCurr =Poi nt Qut put [2] ;

}

/1 function to pass position and forces to G.-code
Pass_Hapti c_Position(XHapti cPosCurr, YHapticPosCurr, ZHapticPosCurr,
XHapt i cFor ce, YHapt i cFor ce, ZHapt i cForce);

-20-

Appendix

void Ml tiplyMatrixPoint (void)

{

int i;

/1 Multiplication of Matrix w th Point
/! Result is rotation and novenment of point
for(i=0;i<4;i++)

PointQutput[i]= TransMatrix[0][i]*Pointl nput[O0]
+TransMatri x[1] [i] *Poi nt | nput[1]
+TransMatri x[2] [i]*Poi ntl nput[2]
+TransMatri x[3][i]*Pointlnput[3];

voi d Checkl f VRMLOpen2(BOCOL i ndi cat or)

{

/1 check if VRML-file open
m VRML_Fi | eOpen2=i ndi cat or;
i f(m VRM__Fil eOpen2==1)

{

}

m VRML_Fi | eQpen2=m VRM__Fi | eQpen2;

voi d OnGoHome(voi d)

{

int i,j;

/1 get canera orientation and position
CaneraTransMatrix = nyCanera->get Transf or mvat ri x(FALSE) ;

Il wite all cells to zero
for(i=0;i<4;i++)
for(j=0;j<4;]++)
{
CaneraTransMatrix. _a. melements[i][]j]=0;
CaneraTransMatrix. _alnv.mel enents[i][]]=0;

}

/'l set diagonal to ones

for(i=0;i<4;i++)

{
CameraTransMatri x. _a.melenents[i][i]=1,
CaneraTransMatrix. _alnv.melenments[i][i]=1;

}

/] set coordinates to 0/0/350

CaneraTranshMatri x. _a. m el enent s[3] [2] =350;

CaneraTransMatri x. _al nv. m el enent s[3] [2] =- 350;

/1 set orientation and position of canera

nyCaner a- >set Transf or mivat ri x(Caner aTransMatri x, FALSE, TRUE);

-21-

Appendix

6.1.5 Template hapticsh

/] ===

I Fi | enane : Tenpl ate_haptics. h

I Witten by : Gerrit Farber

I Proj ect . Tenpl ate Ghost Application
I Modul e : Platform | ndependent Haptics

#i f ndef TEMPLATE_HAPTI CS_H
#defi ne TEMPLATE_HAPTI CS_H
#i ncl ude "Tenpl ate. h"

gst Scene *init_haptics(gstScene *pScene = NULL,

voi d Read_VRM__Hapti c(const char *Fil eNane);
voi d enabl e_servo_| oop(int bEnable);

i nt scene_done(void);

i nt query_phant om pos(doubl e *px, doubl e *py,
doubl e query_phant om Xpos();

doubl e query_phant om Ypos();

doubl e query_phant om Zpos();

doubl e query_phant om Xf orce();

doubl e query_phant om Yforce();

doubl e query_phant om Zf orce();

BOCL Checkl f VRMLOpen() ;

static double rotation_anglel

static gstBoundaryCube *workSpaceBounds;

static gstBool ean bl s6DOF = FALSE

static doubl e XFce;

static doubl e YFce;

static double ZFce

static gstPoint position;

static BOOL m VRM__Fil eQpen2; // This flag is set
static BOOL m VRM__Fi | eOpen2

#endi f // TEMPLATE_HAPTI CS_H

6.1.6

Il
11
11
Il
11
11

#i
#i
#i
#i
#i
#i
#i
#i

Template _haptics.cpp

when

doubl e *pz);

i nt bReset PHANTOM = TRUE) ;

mesh | oaded into nmenory

Fi | enane . Tenpl ate_haptics. cpp

Witten by : Gerrit Farber

Pr oj ect . Tenpl ate Ghost Application
Modul e : Platform | ndependent Haptics

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

"stdaf x. h"

"Tenpl ate_haptics. h"
"Tenpl at e_gr aphi cs. h"
"gst Transform h"
"Tenpl ate. h"

<gst VRML. h>
<@l/gl.h>

<@/ gl u. h>

/[l True if servo | oop has been suspended with enabl e_servo_| oop()
static gstBool ean bSuspended = FALSE
static gst Separator *phantonfSep, *geontSep;

-22-

Appendix

gst Scene *init_haptics (gstScene *pScene, int bReset PHANToM
{

nmyScene = new gst Scene();

root Sep = new gst Separator();

phant onSep = new gst Separator();
geonSep = new gst Separator();

nyScene- >set Root (r oot Sep) ;
r oot Sep->addcChi | d(phant onSep) ;
r oot Sep- >addChi | d(geontep) ;

/1 Create the phantom object. When this line is

/'l processed, the phantom position is zeroed

nyPHANTOM = new gst PHANToM PHANTOM NAMVE, bReset PHANToOM) ;

i f (!myPHANTOM >get Val i dConstruction()) {
cerr << "Failure to create a valid construction." << endl;
exit(-1);

}

phant onfSep- >addChi | d(myPHANTOM ;

return nyScene;

}
voi d Read_VRM__Haptic (const char *FileNane)
{
gst Separator *vrm Sep = gst ReadVRMLFi | e(Fi | eNane) ;
vrm Sep = gst ReadVRM_Fi | e(Fi | eNan®e) ;
r oot Sep- >addChi | d(vrm Sep) ;
m VRML_Fi | eOpen=TRUE;// This flag is set when nesh | oaded into nenory
/1 reset Camera orientation and position
OnGoHormre() ;
}
voi d enabl e_servo_l oop (int bEnabl e)
i f (bEnable)
myScene- >st art ServoLoop() ;
el se

nmyScene- >st opSer voLoop() ;

bSuspended = ! bEnabl e;

}
i nt scene_done (void)
{
return (!bSuspended && mnyScene->get DoneServolLoop());
}
i nt query_phantom pos (doubl e *px, double *py, double *pz)
{
positi on = nyPHANToM >get Posi ti on_WC();
*px = position.x();
*py = position.y();
*pz = position.z();
return TRUE;
}

-23-

Appendix

/1 Surface- Contact-Point of PHANToM
doubl e query_phant om Xpos ()

{
ny PHANToM >get SCP_P(posi ti on);
return position.x();

}

doubl e query_phant om Ypos ()

ny PHANToM >get SCP_P(posi ti on);
return position.y();

}

doubl e query_phant om Zpos ()

ny PHANToM >get SCP_P(posi ti on);
return position.z();

}

doubl e query_phant om Xforce ()

{ gst Vector force = nyPHANToM >get Reacti onForce_WC();

return force.x();

}

doubl e query_phantom Yforce ()

{ gst Vector force = nyPHANToM >get Reacti onForce_WC() ;

return force.y();

}

doubl e query_phantom Zforce ()

{ gst Vector force = nyPHANToM >get Reacti onForce_WC() ;

return force. z();

}

-24-

Appendix

6.1.7 glcode.c (Function GetTrianlel dent)

PRI VATE int GetTriangl el dent()
{

int ntriangs, ui, vO;
int idTriangle = -1;

doubl e maxX, m nX, nmaxY, mnY, nmaxZ, m nZ

int test=0;
ntriangs = mnumlri angs;

for (ui=0; ui<ntriangs; ui++)

{

//get min and max values of triangle

m nX = maxX = mpVerts[m pTriangs[ui].vert[0]].x;
mnY = maxY = mpVerts[m pTriangs[ui].vert[0]].vy;
mnZ = maxZ = mpVerts[mpTriangs[ui].vert[0]].z;

for (v0=1; v0<3; vO++)
{ if(mpVerts[mpTriangs[ui].
mnX = mpVerts[mpTri
if(mpVerts[mpTriangs[ui].
maxX = m pVerts[m pTri
if(mpVerts[mpTriangs[ui].
mnY = mpVerts[mpTri
if(mpVerts[mpTriangs[ui].
maxY = m pVerts[m pTri
if(mpVerts[mpTriangs[ui].
mnZ = mpVerts[mpTri
if(mpVerts[mpTriangs[ui].
maxZ = mpVerts[m pTri

vert[v0]].x < minX)
angs[ui].vert[v0]].Xx;
vert[v0]].x > maxX)
angs[ui].vert[v0]].Xx;
vert[v0]].y < mnY)
angs[ui].vert[v0]].vy;
vert[v0]].y > maxy)
angs[ui].vert[v0]].vy;
vert[v0]].z < min2)
angs[ui].vert[v0]]. z;
vert[v0]].z > maxZ2)
angs[ui].vert[v0]]. z;

}
for (v0=0; v0<3; vO++)
{
i f((XPos_Hapt>m nX & & XPos_Hapt <maxX) &&
(YPos_Hapt >mi nY && YPos_Hapt <naxY) &&
(ZPos_Hapt >mi nZ && ZPos_Hapt <maxZ))
idTriangle = ui;
}
}
if(idTriangle == -1)
idTriangle = idTngl ast;
el se
i dTngl ast = idTriangl e;

return(idTriangle);

-25-

Appendix

6.1.8 glcode.c (Function GL Render ProvBelt)

PRI VATE voi d GLRender ProvBel t (doubl e dept h)

{
doubl e VX . VY , VZ,

doubl e VXNor mL, VYNormil, VZNornil, VabsNornmi;
doubl e VXNor n2, VYNorn2, VZNorn2, VabsNorn2;

/1 V equal to the Directino of the Force of Haptic

VX = (XFor ce_Hapt +0. 000000001) / 2;
VY = (YFor ce_Hapt +0. 000000002) / 2;
VZ = (ZFor ce_Hapt +0. 000000003) / 2;

/1 Calculation of Nornmal to Direction of Force of Haptic
VXNorml = (VY-VZ);

VYNor mil (VZ-VX);

VZNor ml (VX-VY);

VabsNorml = sqrt (pow VXNor i, 2) +pow(VYNor i, 2) +pow VZNor i, 2)) ;
VXNor mL = VXNor ml/ VabsNor nil/ 2* 4/ 3;

VYNor i VYNor ml/ VabsNor nil/ 2* 4/ 3;

VZNor il = VZNor ml/ VabsNor ml/ 2* 4/ 3;

/1 Cal cul ation of Second Normal, perpendicular to

// Direction of Force of Haptic and to first Normal

VXNor n2 = (VY*VZNor mi- VZ* VYNor) ;
VYNor n2 = (VZ* VXNor miL- VX* VZNor) ;
VZNor n2 = (VX* VYNor niL- VY* VXNor) ;

VabsNorn2 = sqrt (pow VXNor n2, 2) +pow VYNor n2, 2) +pow VZNor n2, 2));

VXNor m2 = VXNor n2/ VabsNor n2/ 2* 4/ 3;
VYNor n2 = VYNor n2/ VabsNor n2/ 2*4/ 3;
VZNor n2 = VZNor n2/ VabsNor n2/ 2* 4/ 3;

gl NewLi st (BAND_LI ST, GL_COWPI LE);
gl Begi n(GL_QUADS) ;

/1 Provisional Belt indicating pressure
gl Normal 3f (0.0, 0.0, 1.0);
gl Vertex3f ((fl oat) (XPos_Hapt - VX+VXNor nL* dept h),

(float) (YPos_Hapt - VY+VYNor mL*dept h),

(fl oat) (ZPos_Hapt - VZ+VZNor mL*depth)); // back bottom | eft
gl Vertex3f((float) (XPos_Hapt - VX+VXNor n2*dept h) ,

(fl oat) (YPos_Hapt - VY+VYNor n2*dept h) ,

(f1 oat) (ZPos_Hapt - VZ+VZNor n2*dept h)); // back bottom | eft
gl Vertex3f ((fl oat) (XPos_Hapt - VX- VXNor mL* dept h),

(float) (YPos_Hapt - VY- VYNor mL*dept h),

(float) (ZPos_Hapt - VZ- VZNor mL*dept h)); // back bottom |l eft
gl Vertex3f ((fl oat) (XPos_Hapt - VX- VXNor m2* dept h),

(float) (YPos_Hapt - VY- VYNor n2*dept h),

(f1 oat) (ZPos_Hapt - VZ- VZNor n2*dept h)); // back bottom | eft

gl End() ;
gl EndLi st ();

-26-

Appendix

6.1.9 glcode.c (Function Pass Haptic Position)

voi d Pass_Haptic_Position(double Xpos_Haptic , double Ypos_Haptic ,
doubl e Zpos_Haptic , double Xforce_Haptic,
doubl e Yforce_Haptic, double Zforce_Haptic)

{
XPos_Hapt = Xpos_Hapti c;
YPos_Hapt = Ypos_Hapti c;
ZPos_Hapt = Zpos_Hapti c;
XForce_Hapt = Xforce_Haptic;
YForce_Hapt = Yforce_Hapti c;
ZForce_Hapt = Zforce_Haptic;
Force_Hapt = sqrt(pow XForce_Hapt,2) +
pow(YFor ce_Hapt, 2) +
pow ZFor ce_Hapt, 2));
}

6.1.10 glcode.c (Partsof function GL Render Boxes)

if(it==nt-1)
{ i f (1 ndChangeO Par an¥=0)
h=For ce_Hapt St or e;
m pTraj s[it]. parans. pressure=(float)h;

G.Render ProvBel t (d); // Introduced for Haptic

i f(Force_Hapt > 0)
gl Cal | Li st (BAND_LI ST);

-27 -

Appendix

6.2 Bibliography
The following bibliography was used during the processing of the project:

Company and Product-1nformation, SensAble Technologies Inc.
http://www.sensable.com/

GHOST API Reference Guide for v4.0, SensAble Technologies Inc.
http://www.sensabl e.com/support/phantom_ghost/datafiless GHOST APl ReferenceM anual . pdf

NemcovaD., April 2000, Haptic interface, Masaryk University, Czech republic, Faculty
of Informatics.
http://www.cg.tuwien.ac.at/studentwork/ CESCG/CESCG-2000/DNemcovalindex.html

Certec, Non-Visual Haptic Interaction Design. Consulted on 01.07.2001
http://www.certec.Ith.se/doc/hapticinteraction/

Palomo L., 2003, Internal document 10C, Barcelona, Spain, “Desenvolupament dina
eine per alageneracio de trgjectories i la programacio de robots per tasques de pulit”

Gregory K., 1997, Visual C™*5 Referenzen und Anwendungen, Que-Verlag.

Papula L., 1994, 11-Vektorrechnung, In: Mathematische Formel sammlung fir Ingenieure
und Naturwissenschaftler, Vieweg, pp.41-55

-28-

