
Application of the Haptic-device PHANToM for
the generation of trayectories of a polishing belt

over a rigid object defined in VRML.

Gerrit Färber, Luis Basañez

Institut d´Organització i Control de Sistemes Industrials (IOC)
Programa Doctorado: Automatización Avanzada y Robótica

- 1 -

Table of contents

Introduction... 3

Application PCG ... 4
PCG .. 4

Haptic device ... 6
Definition.. 6
PHANToM ... 6
GHOST SDK.. 7

Implementation of PHANToM .. 8
Structure of source-code ... 8
Implementations in source code for PHANToM.. 8
Change from MDI to SDI Application ... 9
Derivation of MFC-classes ... 9
Required functions for PHANToM (pcgview.cpp/h) 10
Interface to haptic device (Template.cpp/h) ... 10
Visualization with ghostGLManager (Templates_graphics.cpp/h) 11
Haptic environment (Templates_haptics.cpp/h) ... 11
Problems in original program ... 12

User´s Guide .. 14
General Note... 14
Setup and initialization of the PHANToM ... 14
Loading the workpiece ... 15
Rotation and displacement of the scene ... 15
Placing trayectories .. 16

Appendix.. 17
Source-Code ... 17
Template.h .. 17
Template.cpp .. 18
Template_graphics.h... 18
Template_graphics.cpp ... 19
Template_haptics.h ... 22
Template_haptics.cpp ... 22

- 2 -

glcode.c (Function GetTrianleIdent) .. 25
glcode.c (Function GLRenderProvBelt) ... 26
glcode.c (Function Pass_Haptic_Position) ... 27
glcode.c (Parts of function GLRenderBoxes)... 27
Bibliography ... 28

- 3 -

PART 1 Introduction

Haptic devices offer new perspectives for areas like simulation and teleoperation. For
countless applications in the world of three dimensional space the interaction between the
operator and the computer requires more than the simple two dimensional input of the
mouse. Even more with the haptic devices it is possible to feedback the forces and torques
that result in the collision with the objects being part of the simulation or the amplified
area of vision. It is a common technique to scale the length and forces applied by an oper-
ator.

One of the applications of automation in the industry is the polishing of workpieces that
are passed along a polishing belt. The advantage of the automation of these processes is to
avoid accidents of operators, harm caused by the dust in the lungs of the operator and of
course the fact that all the workpieces are treated in the same way which then results in a
higher quality of the product.
In the “Institut d´Organització i Control de Sistemes Industrials” (IOC), a software-pro-
gram was developed that permits applying trayectories to a workpiece which is described
with a mesh in VRML. The information of the trayectories then are stored in a file which
can be utilized by the robot executing the task.

For the positioning of the trayectories the program uses the mouse and the keyboard as
interface. Taking advantage of the possibilities that offers a haptic device, the objective of
the presented work is to be able to use the program with haptic device PHANToM that is
manufactured by the company SensAble Technologies.

The presented work is based on the existing software program that handles and adminis-
trates the workpiece and the applied trayectories. Additional functionality was imple-
mented which permits the operator to use the PHANToM to determine the position and
the force of each trayectory.

- 4 -

PART 2 Application PCG

In the IOC a software-application was developed, written in C++ containing the imple-
mentation of the PCG (Polishing Curves Generator). The program was created as part of a
final year´s project by Iván Díaz Martín, supervised by Luis Basañez Villaluenga in the
year 2001. The title of this project is “Generación de una interface gráfica para determinar
trayectorias a realizar por robots en el pulido de piezas”.

The objective of the project was to create a tool on the computer that permits the genera-
tion of trayectories over a workpiece (for example a doorknob) using a set of parameters.
The stored trayectories then can be used to program a robot executing a task of polishing
a workpiece by passing it along a polishing belt.
The parameters include values defining the force with which the workpiece will be
pressed against the polishing belt, the velocity of the polishing belt for the particular
trayectory and also the width of the polishing belt. Depending on these parameters the
robot is able to fulfill his work automatically.

 2.1 PCG

The application of the PCG was written for the PC-platform with the operating system
Microsoft Windows. The program was implemented in C++ using the Microsoft Founda-
tion Classes (MFC) for the programming of the windows and the administration of the
data. The visual part of the Application-Interface (API) is implemented with OpenGL,
showing the object to be polished, a pointer which indicates where to place the trayecto-
ries and the trayectories itself.

The program reads a file that describes the object to be polished using the definition of
VRML. Both VRML 1.0 and VRML 2.0 can be used for the description of the object, tak-
ing in account that only Mesh-definitions are permitted. The mesh consist of individual
triangles that are defined by the position of its vertices. With this information the position
and orientation of the triangle can be obtained. The triangles altogether then form the
object that is considered the workpiece.

After the workpiece is located in the virtual space the mouse is used to place the trayecto-
ries. The visualization of a trayectory consists of two parts: First the path that the robot
has to pass the workpiece along the polishing belt, indicated by a thin line on the surface
of the object. Second a wide line that represents the resulting surface that is achieved by
passing the workpiece along the polishing belt. The second line is a projection inside the
object beneath the line that indicates the path of the object along the polishing belt. The

Application PCG

- 5 -

parameters for pressure and width determine the depth under the surface of the object
and the width of the line.

Figure 1. Program “PCG” utilizing the mouse pointer.

The positioning of the polishing trayectories can be divided into two types. Once the
parameters are set, a series of connected trayectories can be placed, all using the same set
of parameters. This series then can be deselected and a new series of trayectories can be
positioned with a different set of parameters, even though the values of the parameters
might habe the same values.

The program also provides different operating modes for the visualization of the object.
The normal operating mode is the mode in which the object is drawn by showing the
individual triangles. Besides that a mode exist in which only the vertices of the triangles
are shown and also a mode in which only the edges of the triangles are shown. In any
case the trayectories are displayed in the same way.

In the case that the definition of the object in VRML results in the wrong orientation of
the triangles, the triangles can be displayed using counter-clockwise visualization of the
object.

As part of the positioning of the polishing trayectories, the program offers a variety of
post-processing of the trayectories. Once several series of trayectories are positioned it is
possible to return to the parameters of each of the series, changing the values for veloc-
ity, pressure or width. However, it is not possible to change the position of one or more
trayectories once they are placed. In this case it is indispensable to replace the trayectory
by a new one.

Finally the application permits to store the information of the positioned trayectories in
two files with the values for position and the parameters of the trayectories. The basic
difference between the two files is the format to store the information. These files then
can be used to upload to a robot accomplishing its task of polishing the real workpieces.

- 6 -

PART 3 Haptic device

The Application PCG is programed to utilize the mouse of the computer in order to posi-
tion the trayectories depending on a set of parameters entered by the keyboard. For the
operator it may not be adequate to enter a value of the force that the robot then will apply
to the workpiece. It would be ideal to give the operator the possibility to actually feel the
force which he wants the robot to press the workpiece against the polishing belt. This sen-
sation of feeling the applied force can be realized by a haptic device.

 3.1 Definition

The word haptic is of greek origin [greek: háptein] and describes the tactile sense. It is the
physical interaction via touch which nowadays mainly takes in consideration touching
and interacting with virtual and remote environments. It is used as an addition to optical
and acoustical output devices in various fields of applications.

The haptic devices already can be found in areas of Education, Medicine, Entertainment
and of course in the industry. Various of the following tasks are already performed using
haptic devices:

• Amplification of vision for teleoperation in surgery,Rehabilitation, Computer games,
CAD-designs and construction, teleoperation, simulation of virtual environments,
position and force scaling, assistance in guided remote equipment, and many more.

The haptic devices form a man-machine-interface which gives different possibilities to
the so far utilized interfaces. Amongst these mouse, keyboard, speakers and of course the
monitor. With the haptic devices it is possible to enter in a simulation of an authentic
world with the advantage of actually feeling the movements and applying forces by the
intuitive sense of the operator.

 3.2 PHANToM

The haptic interface used in the presented work is the PHANToMTM 1.5/6DOF manufac-
tured by the company SensAble Technologies. This haptic device was developed at the
Massachusetts Institute of Technology (MIT) and provides the ability to operate in an
office/desktop environment, compatibility with standard PCs and a universal design for a

Haptic device

- 7 -

broad range of applications. The operating system may be Microsoft Windows or Linux.
Several models of the PHANToM with different features are available.

The PHANToMTM 1.5/6DOF has the ability to sense the position and the orientation
(3+3 degrees of freedom) of the handle and also to feedback the three forces and the
three torques, indicating a collision of the haptic pointer with the virtual object.The
workspace that provides the PHANToM 1.5 is 19.1 x 26.7 x 38.1 cm, or the range of
motion approximate to the lower arm pivoting at the user's elbow.

 3.3 GHOST SDK

Together with the PHANToM the manufacturer provides a package of software libraries
called GHOST SDK (General Haptic Open Software Development Toolkit) which is an
object-oriented toolkit, written in C++, containing classes and methods for support of the
haptic interface PHANToM. It represents the haptic environment as a hierarchical col-
lection of geometric objects and spatial effects (buzzing, inertia, viscosity, etc.).
GHOST-libraries support triangular meshes which are used by the existing PCG-applica-
tion.

- 8 -

PART 4 Implementation of PHANToM

For the implementation of the PHANToM to the existing code of the PCG-Application a
series of changes had be included. In this partition first the structure of the source code
will be explained and then the necessary changes.

 4.1 Structure of source-code

The original application is generated with the MFC (Microsoft Foundation Classes) and
which forces a fixed structure of coding. The Application then can be separated into four
parts resulting from the original code: The Mainframe-part, the application-part, the doc-
ument-part and the view-part. Additionally the part of the PHANToM had to be included.
The following table shows the structure of the application with the new part for the
PHANToM:

TABEL 1. Structure of the source-code with additional part for the PHANToM.

 4.2 Implementations in source code for PHANToM

Enabling the PHANToM requires a range of implementations to the program. First of all
the type of document had to be changed from MDI (Multi-Document-Interface) to SDI
(Single-Document-Interface). In continuation the implemented classes had to be changed
which are used by the MFC. The GHOST-SDK uses a derivation of these fundamental
classes for the document-part, view-part and application-part with additional functional-
ity to be able to utilize the PHANToM.

h-File c/cpp-File

Mainframe: mainfrm.h mainfrm.cpp

Application: pcg.h pcg.cpp

Document: pcgdoc.h

wrl2mesh.h

graph.h

pcgdoc.cpp

wrl2mesh.c

graph.c

View: pcgview.h pcgview.cpp

PHANToM: template.h

template_graphics.h

template_haptics.h

template.cpp

template_graphics.cpp

template_haptics.cpp

Implementation of PHANToM

- 9 -

4.2.1 Change from MDI to SDI Application

The libraries which are utilized allow the user to use the graphical-environment that
works with a single document. The existing program is using a multiple document envi-
ronment, although the advantages are not used. This change makes it necessary to mod-
ify the file pcg.cpp. The fundamental change takes place where the document-part gets
linked with the view-part and the mainframe-part. The considered code is the following:

TABEL 2. Fundamental change in source-code to pass the application from a
MDI (Multi Document Interface) to a SDI (Single Document Interface).

Furthermore the files Childfrm.cpp together with Childfrm.h are no longer used and the
corresponding include-call is removed. The change from MDI to SDI also implements
some minor changes to the menu-bar and the tool-bar in order to disable some of the
functions while no workpiece is displayed and to disable the ability to load another
workpiece while one is already loaded.

4.2.2 Derivation of MFC-classes

The classes used by the MFC in principle are also used by the GHOST-SDK. The differ-
ence is that some functionality for the PHANToM has to be included. Therefore the
GHOST-SDK uses its own set of classes with a derivation of the ones used by the MFC.
The change of classes are the following:

TABEL 3. Change of classes to use the functionality necessary for the GHOST-libraries.

The derived classes for the GHOST-SDK then require a set of functions that are called
during the execution of the application.

MDI-code: SDI-code:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_VRML1TYPE,
RUNTIME_CLASS(CPCGDoc),
RUNTIME_CLASS(CChildFrame),
RUNTIME_CLASS(CPCGView));

AddDocTemplate(pDocTemplate);

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_VRML1TYPE,
RUNTIME_CLASS(CPCGDoc),
RUNTIME_CLASS(CMainFrame),
RUNTIME_CLASS(CPCGView));

AddDocTemplate(pDocTemplate);

Derivation of MFC-classes include h-file:

Mainframe: class CMainFrame : public CMDIFrameWnd

class CMainFrame : public CHapticFrame HapticFrame.h

Application: class CPCGApp : public CWinApp

class CPCGApp : public CHapticApp HapticApp.h

Document: class CPCGDoc : public CDocument

class CPCGDoc : public CHapticDoc HapticDoc.h

View: class CPCGView : public CView

class CPCGView : public CHapticView HapticView.h

Implementation of PHANToM

- 10 -

4.2.3 Required functions for PHANToM (pcgview.cpp/h)

The haptic device PHANToM requires a series of functions which are called by the
application during execution. These functions are to be included into the files that handle
the visualization of the application. The files are pcgview.cpp and pcgview.h and the
required functions are the following:

void StartProgram(BOOL);
void InitGraphics();
void EnableServoLoop(BOOL bEnable);
void UpdateGraphics();
void ResizeGraphics(int cx, int cy);
void EndProgram();
BOOL ProgramDone();
void TermGraphics();
LPCSTR* QueryPHANToMNames();

All these functions are required because they are called at a certain instance during the
execution of the application. The functions “StartProgram” and “InitGraphics” are called
at the very beginning of the execution and this is where the virtual scene will be defined.
Here also the initialization of the existing OpenGL part is implemented with the function
“Init_GL“.

The function “EnableServoLoop” is used to give the impulse to start or to end the servo-
loop which is necessary for generating the loops in which the information of the haptic
device gets updated.

This servo-loop then calls the function “UpdateGraphics“ where all the functions are to
be placed that require permanent updates. In this case it is the tracking of the position
and the forces of the haptic device and also the rendering of the graphical part of the
application.

The function “ResizeGraphics“ is called every time the screen is resized, which also
occurs at the beginning of the execution.

For the termination of the application the three functions “EndProgram” and “Program-
Done” and “TermGraphics“ are performed. Here the haptic device and the scene will be
terminated and the occupied memory will be released.

4.2.4 Interface to haptic device (Template.cpp/h)

The file template.cpp together with template.h works as an interface between the view-
part of the application (pcgview) and the part of the haptic device. It contains the defini-
tion of the scene and the haptic device which is necessary for the generation of the virtual

Implementation of PHANToM

- 11 -

environment. During the initialization of the virtual scene a series of important include
files are required:

#include "gstScene.h"
#include <ghostGLSyncCamera.h>
#include "GL.h"

The file “gstScene.h“ contains the functionality that provides the handling of the scene.
This is the basic unit which then gets loaded with objects like the haptic device, the
workpiece and the trayectories. Also the file “ghostGLSyncCamera.h“ is necessary
which enables certain functionality together with the functions of OpenGL. Finally the
file “GL.h” has to be included for the ability to use commands of OpenGL.

4.2.5 Visualization with ghostGLManager (Templates_graphics.cpp/h)

As for the graphical part of the virtual environment it is necessary to load the ghostGL-
Manager. This manager makes it possible to visualize the scene and all of its contents.
Including the file “ghostGLPinchXform.h“ gives additional functionality to the visual-
ization which is the possibility to move the camera position within the scene. This can be
achieved by pressing constantly the button on the handle of the PHANToM and displac-
ing or rotating the handle meanwhile. The resulting effect is that the user displaces and
rotates the entire virtual scene, in other words the operator changes the position and ori-
entation of the camera

The function “update_graphics“, initiated by the view-part, makes sure that the virtual
scene will be redrawn and also the position of the PHANToM is updated and send to the
part of the program where the trayectories, programmed in OpenGL, are processed. In
this part of the program also the termination of the ghostGLManager can be found, initi-
ated by the view-part, when closing the application.

4.2.6 Haptic environment (Templates_haptics.cpp/h)

In this part of the program the information is processed which is in direct relation to the
haptic device. Once the scene is initialized, it can be loaded with different “separators”
(term according to GHOST-SDK). One of the separators is the haptic device which gets
initialized in this partition.
The workpiece also has to be attached to the virtual environment and unlike the trayecto-
ries, the workpiece has to be rigid and touchable. The workpiece, defined in VRML, can
be added as a separator to the virtual environment, just like the haptic device.

The additional functionality implemented in this part is the starting and the termination
of the servo-loops necessary for the haptic device and the virtual environment in order to
obtain information on position and orientation of the handle and also to feedback the
considered forces and torques, if they exist. In the presented work only the position and

Implementation of PHANToM

- 12 -

the corresponding forces of the handle returned to the electrical motors of the PHAN-
ToM are of interest.

The GHOST-libraries permit to obtain the position of the PHANToM in the virtual envi-
ronment by calling the function “getSCP_P”. The abbreviation SCP signifies Surface-
Contact-Point. The function for obtaining the feedback force can be obtained with the
function “getReactionForce_WC“. The abbreviation stands for World-Coordinates.
Once the position and the forces are determined they can be passed to the part where the
application handles the trayectories (glcode.cpp) to be placed, depending on the position
and the applied force of the haptic device. This is achieved by the function-call
“Pass_Haptic_Position“ which contains the arguments position and forces.

In the program PCG the contact point of the object with the mouse-pointer is obtained by
comparing the position of the mouse in 2D-coordinates with the projection of the work-
piece to screen-coordinates. In the original program a routine is implemented, using
OpenGL, that returns the identity of the triangle over which the mouse is located. The
GHOST-libraries do not support any 2D values and therefore it is not possible to use the
implemented functionality. A new function (“GetTriangleIdent”) had to be implemented
surrounding each triangle with a virtual box and then comparing if the actual position of
the haptic device is within this surrounding box. With this information and the fact that
the applied force is greater than zero the processing is continued in the original way.

As a next step a function (“GLRenderProvBelt“) was implemented that projects a rectan-
gle with the length of the edges equal to the width of the trayectory to be placed. This
rectangle then indicates the operator in which depth the trayectory will be placed. The
bigger the value of the applied force, the deeper the rectangle and the resulting trayectory
will be placed.

In the original program it was only possible to use the left mouse button for the confir-
mation where to locate a certain trayectory. It is not very convenient to work with the
mouse and the PHANToM at the same time. For convenience the confirmation to posi-
tion a trayectory now also can be done with the space bar or the return key of the key-
board.

With these implemented functions the program PCG is fully functional with the haptic
device PHANToM.

 4.3 Problems in original program

During the implementation of the functionality of the haptic device PHANToM it was
discovered that the original program was not fully functional. Occasionally the program
does not respond properly. When a set of trayectories is placed, stored to the pcg-file and
then reloaded, the trayectories not always were reloaded correctly. The problem was
found in two instances, during the calculation of angle “phi” of the trayectories. A divi-
sion was used that occasionally has a cero in the denominator. The program, however,

Implementation of PHANToM

- 13 -

does not interrupt but continues with an undefined value “-1.#IND“. Which results in a
wrong execution of the program. This problem only occured when saving and recovering
a set of trayectories. As a solution for the problem the values of the respective variables
are checked and set to a defined value.

- 14 -

PART 5 User´s Guide

The presented work is based on the existing software program that handles and adminis-
trates the workpiece and the applied trayectories. The software implementation of the
additional functionality in order to be able to use the haptic device PHANToM was
described in the last partition. In this partition the impact on the utilization of the program
is described.

 5.1 General Note

First of all it has to be highlighted that at the very beginning it might seem difficult to
handle the haptic device PHANToM. This is due to the additional dimension that the hap-
tic device provides, compared to the mouse, and due to the possibility to rotate the entire
scene with the handle. Therefore it is necessary to get familiarized with its use.

The functionality provided by the original program, using the mouse to rotate and move
the workpiece, no longer exists and is replaced by the functionality of the haptic device
PHANToM.

 5.2 Setup and initialization of the PHANToM

Before the program can be used it is indispensable to connect the PHANToM to the paral-
lel port of the computer, connect the supply cable and switch on the two switches on the
back-side of the chassis.

The next step is to start the program “PCGHaptic.exe“, described in this document. Once
the program is executed, a screen will appear (see Figure2).

Figure 2. Initial screen, move the handle of the PHANToM into
the neutral position and press “Enter” (”Return”).

User´s Guide

- 15 -

The neutral position of the handle of the PHANToM can be reached by elevating the
handle by 10 to 15cm above the table. This position is indicated by the dashed lines in
Figure3. The handle also has to be orientated horizontally facing away from the chassis.
Once the PHANToM is initialized, the handle can be placed on the table again.

Figure 3. Neutral position of the haptic indicated by the dashed lines.

Now it is necessary to stroke the key “Enter” (“Return”) to store this position as refer-
ence point. Once the PHANToM is initialized, the handle can be placed on the table
again.

 5.3 Loading the workpiece

The next step is to load a workpiece, defined in VRML. The option “Open Workpiece”
can be found in the menu under “File”. Once the workpiece is selected and loaded, the
functionality of the program does only vary when applying the pressure to a certain
trayectory and performing a rotation or displacement of the scene.

 5.4 Rotation and displacement of the scene

Once the workpiece is loaded to the scene it is possible to rotate and displace it together
with the entire scene. This can be achieved by pressing the button that can be found on
the handle of the PHANToM. It is necessary to press the button constantly while rotating
or displacing the handle.

User´s Guide

- 16 -

 5.5 Placing trayectories
The main difference in the process of placing the trayectories is that in the dialog “Create
a new curve“ it is not necessary to enter a value for “Pressure”. The value for “Pressure”
then will be determined by the applied force of the PHANAToM at the beginning of the
trayectory.

Like in the original program the trayectories can be placed by stroking the left mouse
button. However, naturally a person that is right hander uses the right hand to handle the
PHANToM (vice versa for left hander) and is familiar with the use of the mouse with his
right hand as well. Handling the PHANToM with the right hand it was found inconve-
nient to use the left hand to stroke the left mouse button in order to place the trayectories.
Therefore this function was extended to the two keys “Space” and “Return” on the key-
board.

Like in the original program, all the following subtrayectories are placed with the same
value for “Pressure”, only choosing a new trayectory will allow the user to apply a differ-
ent value for “Pressure”.

The subsequent process of saving the trayectories and also the format of the files con-
taining the information of the trayectories is performed in the same way as it was imple-
mented in the original program.

- 17 -

PART 6 Appendix

 6.1 Source-Code

The following source code was added into the PCG-Application in order to implement the
functionality of the haptic device PHANToM:

6.1.1 Template.h
//===
// Filename : Template.h
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Application Entry
//===

#ifndef TEMPLATE_H
#define TEMPLATE_H

#ifdef _WIN32
// Disable data conversion warnings
#pragma warning(disable : 4305) // X86
#endif

//===
// Global Variables / Constants / Include-files
//===
#define PHANTOM_NAME "Default PHANToM" // PHANToM configuration string
#include "gstScene.h"
#include <ghostGLSyncCamera.h>
#include "GL.h"
//===
// Function
//===
void start_program(int bResetPHANToM);
void end_program(void);

static gstScene *myScene = NULL;
static gstSphere *mySphere;
static gstPHANToM *myPHANToM;
static ghostGLSyncCamera *m_camera;
static gstBoundaryCube *m_gstWorkspace;
static gstSeparator *rootSep;
static BOOL RenewInc;

#endif // TEMPLATE_H

Appendix

- 18 -

6.1.2 Template.cpp

//===
// Filename : Template.cpp
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Application Entry
//===

#include "Template.h"
#include "Template_haptics.h"
#include "Template_graphics.h"

void start_program (int bResetPHANToM)
{ myScene = new gstScene();// Create a shared static instance of the scene
 myScene = init_haptics(myScene, bResetPHANToM);// Initialize scene graph
 init_graphics(myScene);// Now force init_graphics to load the scene graph
}

void end_program (void)
{ // Perform whatever cleanup needs to be done
 if (myScene)

delete myScene;
}

6.1.3 Template_graphics.h

//===
// Filename : Template_graphics.h
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Graphics
//===

void init_graphics(gstScene *pScene = NULL);
void term_graphics(void);
void reshape(GLint width, GLint height);
void update_graphics(void);
void CheckIfVRMLOpen2(BOOL);
void OnGoHome();
void MultiplyMatrixPoint();

static double XHapticPosCurr;
static double YHapticPosCurr;
static double ZHapticPosCurr;
static double XHapticPosPrev;
static double YHapticPosPrev;
static double ZHapticPosPrev;
static double XHapticForce;
static double YHapticForce;
static double ZHapticForce;
static BOOL m_VRML_FileOpen;
static double TransMatrix[4][4];
static double PointInput[4];
static double PointOutput[4];
static gstTransformMatrix CameraTransMatrix;

#endif // TEMPLATE_GRAPHICS_H

Appendix

- 19 -

6.1.4 Template_graphics.cpp

//===
// Filename : Template_graphics.cpp
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Graphics
//===

#include "stdafx.h"
#include "Template_graphics.h"
#include "Template_haptics.h"
#include "Template.h"
#include "glcode\glcode.h"

#include <ghostGLSyncCamera.h>
#include <ghostGLManager.h>
#include <ghostGLPinchXform.h>

static ghostGLManager *myGLManager = NULL;
static gstBoundaryCube *workspaceBounds = NULL;
static ghostGLSyncCamera *myCamera;

void init_graphics (gstScene *pScene)
{

RenewInc=0;
m_VRML_FileOpen2=FALSE;

 if (myGLManager && pScene)
 myGLManager->loadScene(pScene);

 if (!myGLManager)
{

myCamera= new ghostGLSyncCamera();
 myGLManager = new ghostGLManager(myCamera);

 // setup the pinch transform = movement camera
myCamera->setSyncMode(ghostGLSyncCamera::SYNC_WORKSPACE_TO_CAMERA);
static ghostGLPinchXForm *pinchXFormObj = new ghostGLPinchXForm();
myGLManager->addActionObject(pinchXFormObj);

}
}

void term_graphics (void)
{ if (myGLManager)
 {
 delete myGLManager;
 myGLManager = NULL;
 }
}

Appendix

- 20 -

void reshape (GLint width, GLint height)
{
 if (myGLManager)
 myGLManager->reshape(width, height);
}

void update_graphics (void)
{

gstPoint CameraPos;
int i,j;

RenewInc++;
// Graphics updated two out of three cycle in order
// to permit the toolbar to update

 if (myGLManager && (RenewInc>1 || m_VRML_FileOpen2==0))
{

if(RenewInc==2)
RenewInc=0;

 myGLManager->redraw();

// Read Haptic: Position and Force and store
// current position to previous position
XHapticPosPrev = XHapticPosCurr;
YHapticPosPrev = YHapticPosCurr;
ZHapticPosPrev = ZHapticPosCurr;

XHapticPosCurr=query_phantom_Xpos();
YHapticPosCurr=query_phantom_Ypos();
ZHapticPosCurr=query_phantom_Zpos();
XHapticForce=query_phantom_Xforce();
YHapticForce=query_phantom_Yforce();
ZHapticForce=query_phantom_Zforce();

if(m_VRML_FileOpen2==1)
{

// get camera position and orientation in order
// to rotate and move haptic-position
CameraTransMatrix = myCamera->getTransformMatrix(FALSE);
for(i=0;i<4;i++)
 for(j=0;j<4;j++)

TransMatrix[i][j] = CameraTransMatrix._a.m_elements[i][j];

// rotation and displacement of haptic position
// due to camera position
PointInput[0] = XHapticPosCurr;
PointInput[1] = YHapticPosCurr;
PointInput[2] = ZHapticPosCurr-350;
PointInput[3] = 1;
MultiplyMatrixPoint();
XHapticPosCurr=PointOutput[0];
YHapticPosCurr=PointOutput[1];
ZHapticPosCurr=PointOutput[2];

}
// function to pass position and forces to GL-code
Pass_Haptic_Position(XHapticPosCurr, YHapticPosCurr, ZHapticPosCurr,

 XHapticForce, YHapticForce, ZHapticForce);
}

}

Appendix

- 21 -

void MultiplyMatrixPoint(void)
{

int i;

// Multiplication of Matrix with Point
// Result is rotation and movement of point
for(i=0;i<4;i++)

PointOutput[i]= TransMatrix[0][i]*PointInput[0]
+TransMatrix[1][i]*PointInput[1]
+TransMatrix[2][i]*PointInput[2]
+TransMatrix[3][i]*PointInput[3];

}

void CheckIfVRMLOpen2(BOOL indicator)
{

// check if VRML-file open
m_VRML_FileOpen2=indicator;
if(m_VRML_FileOpen2==1)
{

m_VRML_FileOpen2=m_VRML_FileOpen2;
}

}

void OnGoHome(void)
{

int i,j;

// get camera orientation and position
CameraTransMatrix = myCamera->getTransformMatrix(FALSE);

// write all cells to zero
for(i=0;i<4;i++)
 for(j=0;j<4;j++)
 {

CameraTransMatrix._a.m_elements[i][j]=0;
 CameraTransMatrix._aInv.m_elements[i][j]=0;
 }

// set diagonal to ones
for(i=0;i<4;i++)
{

CameraTransMatrix._a.m_elements[i][i]=1;
CameraTransMatrix._aInv.m_elements[i][i]=1;

}

// set coordinates to 0/0/350
CameraTransMatrix._a.m_elements[3][2]=350;
CameraTransMatrix._aInv.m_elements[3][2]=-350;
// set orientation and position of camera
myCamera->setTransformMatrix(CameraTransMatrix, FALSE, TRUE);

}

Appendix

- 22 -

6.1.5 Template_haptics.h
//===
// Filename : Template_haptics.h
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Haptics
//===

#ifndef TEMPLATE_HAPTICS_H
#define TEMPLATE_HAPTICS_H
#include "Template.h"

gstScene *init_haptics(gstScene *pScene = NULL, int bResetPHANToM = TRUE);
void Read_VRML_Haptic(const char *FileName);
void enable_servo_loop(int bEnable);
int scene_done(void);
int query_phantom_pos(double *px, double *py, double *pz);
double query_phantom_Xpos();
double query_phantom_Ypos();
double query_phantom_Zpos();
double query_phantom_Xforce();
double query_phantom_Yforce();
double query_phantom_Zforce();
BOOL CheckIfVRMLOpen();

static double rotation_angle1;
static gstBoundaryCube *workSpaceBounds;
static gstBoolean bIs6DOF = FALSE;
static double XFce;
static double YFce;
static double ZFce;
static gstPoint position;
static BOOL m_VRML_FileOpen2;// This flag is set when mesh loaded into memory
static BOOL m_VRML_FileOpen2;
#endif // TEMPLATE_HAPTICS_H

6.1.6 Template_haptics.cpp

//===
// Filename : Template_haptics.cpp
// Written by : Gerrit Färber
// Project : Template Ghost Application
// Module : Platform Independent Haptics
//===

#include "stdafx.h"
#include "Template_haptics.h"
#include "Template_graphics.h"
#include "gstTransform.h"
#include "Template.h"
#include <gstVRML.h>
#include <GL/gl.h>
#include <GL/glu.h>

// True if servo loop has been suspended with enable_servo_loop()
static gstBoolean bSuspended = FALSE;
static gstSeparator *phantomSep, *geomSep;

Appendix

- 23 -

gstScene *init_haptics (gstScene *pScene, int bResetPHANToM)
{
 myScene = new gstScene();
 rootSep = new gstSeparator();

 phantomSep = new gstSeparator();
 geomSep = new gstSeparator();

 myScene->setRoot(rootSep);
 rootSep->addChild(phantomSep);
 rootSep->addChild(geomSep);

 // Create the phantom object. When this line is
// processed, the phantom position is zeroed

 myPHANToM = new gstPHANToM(PHANTOM_NAME, bResetPHANToM);
 if (!myPHANToM->getValidConstruction()) {
 cerr << "Failure to create a valid construction." << endl;
 exit(-1);
 }
 phantomSep->addChild(myPHANToM);
 return myScene;
}

void Read_VRML_Haptic (const char *FileName)
{

gstSeparator *vrmlSep = gstReadVRMLFile(FileName);
vrmlSep = gstReadVRMLFile(FileName);
rootSep->addChild(vrmlSep);
m_VRML_FileOpen=TRUE;// This flag is set when mesh loaded into memory

// reset Camera orientation and position
OnGoHome();

}

void enable_servo_loop (int bEnable)
{
 if (bEnable)
 myScene->startServoLoop();
 else
 myScene->stopServoLoop();

 bSuspended = !bEnable;
}

int scene_done (void)
{
 return (!bSuspended && myScene->getDoneServoLoop());
}

int query_phantom_pos (double *px, double *py, double *pz)
{
 position = myPHANToM->getPosition_WC();

 *px = position.x();
 *py = position.y();
 *pz = position.z();

 return TRUE;
}

Appendix

- 24 -

// Surface-Contact-Point of PHANToM
double query_phantom_Xpos ()
{

myPHANToM->getSCP_P(position);
 return position.x();
}

double query_phantom_Ypos ()
{

myPHANToM->getSCP_P(position);
 return position.y();
}

double query_phantom_Zpos ()
{

myPHANToM->getSCP_P(position);
 return position.z();
}

double query_phantom_Xforce ()
{ gstVector force = myPHANToM->getReactionForce_WC();
 return force.x();
}

double query_phantom_Yforce ()
{ gstVector force = myPHANToM->getReactionForce_WC();
 return force.y();
}

double query_phantom_Zforce ()
{ gstVector force = myPHANToM->getReactionForce_WC();
 return force.z();
}

Appendix

- 25 -

6.1.7 glcode.c (Function GetTrianleIdent)

PRIVATE int GetTriangleIdent()
{

int ntriangs, ui, v0;
int idTriangle = -1;
double maxX, minX, maxY, minY, maxZ, minZ;

int test=0;
ntriangs = m.numTriangs;

for (ui=0; ui<ntriangs; ui++)
{

//get min and max values of triangle
minX = maxX = m.pVerts[m.pTriangs[ui].vert[0]].x;
minY = maxY = m.pVerts[m.pTriangs[ui].vert[0]].y;
minZ = maxZ = m.pVerts[m.pTriangs[ui].vert[0]].z;
for (v0=1; v0<3; v0++)
{ if(m.pVerts[m.pTriangs[ui].vert[v0]].x < minX)

minX = m.pVerts[m.pTriangs[ui].vert[v0]].x;
if(m.pVerts[m.pTriangs[ui].vert[v0]].x > maxX)

maxX = m.pVerts[m.pTriangs[ui].vert[v0]].x;
if(m.pVerts[m.pTriangs[ui].vert[v0]].y < minY)

minY = m.pVerts[m.pTriangs[ui].vert[v0]].y;
if(m.pVerts[m.pTriangs[ui].vert[v0]].y > maxY)

maxY = m.pVerts[m.pTriangs[ui].vert[v0]].y;
if(m.pVerts[m.pTriangs[ui].vert[v0]].z < minZ)

minZ = m.pVerts[m.pTriangs[ui].vert[v0]].z;
if(m.pVerts[m.pTriangs[ui].vert[v0]].z > maxZ)

maxZ = m.pVerts[m.pTriangs[ui].vert[v0]].z;
}

for (v0=0; v0<3; v0++)
{

if((XPos_Hapt>minX && XPos_Hapt<maxX) &&
(YPos_Hapt>minY && YPos_Hapt<maxY) &&
(ZPos_Hapt>minZ && ZPos_Hapt<maxZ))

idTriangle = ui;
}

}
if(idTriangle == -1)

idTriangle = idTnglast;
else

idTnglast = idTriangle;

return(idTriangle);
}

Appendix

- 26 -

6.1.8 glcode.c (Function GLRenderProvBelt)
PRIVATE void GLRenderProvBelt(double depth)
{
double VX , VY , VZ;
double VXNorm1, VYNorm1, VZNorm1, VabsNorm1;
double VXNorm2, VYNorm2, VZNorm2, VabsNorm2;

// V equal to the Directino of the Force of Haptic
VX = (XForce_Hapt+0.000000001)/2;
VY = (YForce_Hapt+0.000000002)/2;
VZ = (ZForce_Hapt+0.000000003)/2;
// Calculation of Normal to Direction of Force of Haptic
VXNorm1 = (VY-VZ);
VYNorm1 = (VZ-VX);
VZNorm1 = (VX-VY);
VabsNorm1 = sqrt(pow(VXNorm1,2)+pow(VYNorm1,2)+pow(VZNorm1,2));
VXNorm1 = VXNorm1/VabsNorm1/2*4/3;
VYNorm1 = VYNorm1/VabsNorm1/2*4/3;
VZNorm1 = VZNorm1/VabsNorm1/2*4/3;
// Calculation of Second Normal, perpendicular to
// Direction of Force of Haptic and to first Normal
VXNorm2 = (VY*VZNorm1-VZ*VYNorm1);
VYNorm2 = (VZ*VXNorm1-VX*VZNorm1);
VZNorm2 = (VX*VYNorm1-VY*VXNorm1);
VabsNorm2 = sqrt(pow(VXNorm2,2)+pow(VYNorm2,2)+pow(VZNorm2,2));
VXNorm2 = VXNorm2/VabsNorm2/2*4/3;
VYNorm2 = VYNorm2/VabsNorm2/2*4/3;
VZNorm2 = VZNorm2/VabsNorm2/2*4/3;

glNewList(BAND_LIST, GL_COMPILE);
glBegin(GL_QUADS);

// Provisional Belt indicating pressure
glNormal3f(0.0, 0.0, 1.0);
glVertex3f((float)(XPos_Hapt-VX+VXNorm1*depth),

(float)(YPos_Hapt-VY+VYNorm1*depth),
(float)(ZPos_Hapt-VZ+VZNorm1*depth)); // back bottom left

glVertex3f((float)(XPos_Hapt-VX+VXNorm2*depth),
(float)(YPos_Hapt-VY+VYNorm2*depth),
(float)(ZPos_Hapt-VZ+VZNorm2*depth)); // back bottom left

glVertex3f((float)(XPos_Hapt-VX-VXNorm1*depth),
(float)(YPos_Hapt-VY-VYNorm1*depth),
(float)(ZPos_Hapt-VZ-VZNorm1*depth)); // back bottom left

glVertex3f((float)(XPos_Hapt-VX-VXNorm2*depth),
(float)(YPos_Hapt-VY-VYNorm2*depth),
(float)(ZPos_Hapt-VZ-VZNorm2*depth)); // back bottom left

glEnd();
glEndList();

}

Appendix

- 27 -

6.1.9 glcode.c (Function Pass_Haptic_Position)

void Pass_Haptic_Position(double Xpos_Haptic , double Ypos_Haptic ,
double Zpos_Haptic , double Xforce_Haptic,
double Yforce_Haptic, double Zforce_Haptic)

{
XPos_Hapt = Xpos_Haptic;
YPos_Hapt = Ypos_Haptic;
ZPos_Hapt = Zpos_Haptic;

XForce_Hapt = Xforce_Haptic;
YForce_Hapt = Yforce_Haptic;
ZForce_Hapt = Zforce_Haptic;

Force_Hapt = sqrt(pow(XForce_Hapt,2) +
pow(YForce_Hapt,2) +
pow(ZForce_Hapt,2));

}

6.1.10 glcode.c (Parts of function GLRenderBoxes)
if(it==nt-1)
{ if(IndChangeOfParam==0)

h=Force_HaptStore;
m.pTrajs[it].params.pressure=(float)h;

GLRenderProvBelt(d); // Introduced for Haptic

if(Force_Hapt > 0)
glCallList(BAND_LIST);

}

Appendix

- 28 -

 6.2 Bibliography

The following bibliography was used during the processing of the project:

Company and Product-Information, SensAble Technologies Inc.
http://www.sensable.com/

GHOST API Reference Guide for v4.0, SensAble Technologies Inc.
http://www.sensable.com/support/phantom_ghost/datafiles/GHOSTAPIReferenceManual.pdf

Nemcova D., April 2000, Haptic interface, Masaryk University, Czech republic, Faculty
of Informatics.
http://www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-2000/DNemcova/index.html

Certec, Non-Visual Haptic Interaction Design. Consulted on 01.07.2001
http://www.certec.lth.se/doc/hapticinteraction/

Palomo L., 2003, Internal document IOC, Barcelona, Spain, “Desenvolupament dúna
eine per a la generació de trajectòries i la programació de robots per tasques de pulit”

Gregory K., 1997, Visual C++5 Referenzen und Anwendungen, Que-Verlag.

Papula L., 1994, II-Vektorrechnung, In: Mathematische Formelsammlung für Ingenieure
und Naturwissenschaftler, Vieweg, pp.41-55

